Automatisation de la préparation des chimiothérapies

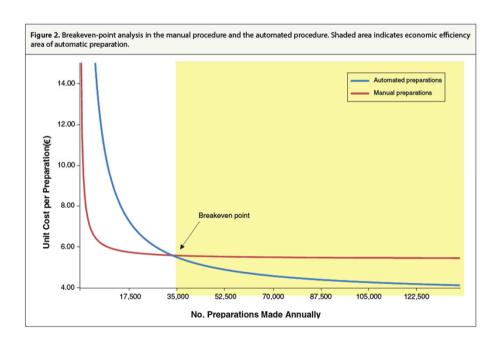
Marie-Laure Brandely-Piat

Unité de Préparations Stériles Ophtalmologiques et Oncologiques Hôpital Cochin, Service de Pharmacie GH Centre Université de Paris, AP-HP

Pourquoi automatiser?

- Automatiser des tâches à faible valeur ajoutée et/ou des tâches répétitives
- Répondre à l'augmentation des besoins (regroupement d'unités, développement de la sous-traitance)
- Répondre aux contraintes liées au manque de personnel
- Souhait de redéployer le personnel vers les services cliniques
- Réduire le risque et la fréquence des TMS
- Protection du manipulateur vis-à-vis du contact avec des produits toxiques (CMR, irritants etc)

Pourquoi automatiser?

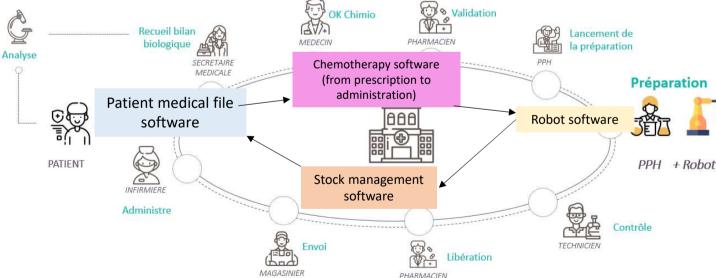

- Protection de l'environnement, confinement de la zone de préparation
- Sécuriser la préparation :
 - Mise en œuvre en environnement contrôlé
 - Contrôles en cours de process (gravimétrie, contrôle vidéo, RFID)
 - Traçabilité et enregistrement de l'ensemble des étapes
- Précision de préparation de +/- 5 % voir mieux
- Rapidité d'exécution
- Etiquetage de la préparation

Pour qui?

- •Nombre restreint de principe actif utilisés, homogénéité de la production
- Possible standardisation des doses prescrites: intérêt +++
- •Activité à croissance importante ou à potentiel de croissance important

Volume de production minimum (Ex: avec Apoteca)

- Intérêt > 30 000 préparations.
- Attention aux consommables captifs


Caractéristiques techniques

- encombrement,
- charge au sol,
- fluides nécessaires (refroidissement),
- bruit en fonctionnement,

• circulation pour le personnel/accès

maintenance,

 informatique : convivialité du logiciel du robot, facilité d'utilisation, évolution du logiciel, intégration au SI : interfaces bidirectionnelles

Critères de sécurité et contrôles qualité

Preliminary controls

<u>Material</u>

- -Integrity, expiry date -preservation condition
- -Stock

Prescription

- -conformity with good practice
- -consistency with protocol
- -harmony with patient biological data
- -dosage

In-process controls

F. Lagarce. Pharm. Technol. Hosp.

Pharm. 2017; 2(1): 29-33

Basket containing material for the preparation

-Nature, expiry date, integrity of material

Sterilisation, decontamination step

- -Time, temperature,
- -sterilizing agent expiry date

Isolator or Safety cabinet (SC) quality check

- -pressure (isolator)
- -glove integrity (isolator)
- -temperature
- -flow velocity (SC)

Preparation procedure / Gravimetric control

- -use of right products (batch numbers, expiry date, identification)
- -homogenization
- -labelling

Controls on final product

Aspect -label

- -visible particles
- -precipitates
- -bubbles

Chemical controls

- -concentration of active ingredients
- -nature of excipients
- -presence of undesired molecules

Preliminary controls

- -integrity, expiry date
- -preservation condition
- -Stock

Prescription

- -conformity with good practice -consistency with protocol
- -harmony with patient biological data
- -dosage

In-process controls

Basket containing material for the preparation

-Nature, expiry date, integrity of material

Sterilisation, decontamination step

- -Time, temperature,
- -sterilizing agent expiry date

Isolator or Safety cabinet (SC) quality check

- -pressure (isolator)
- -glove integrity (isolator)
- -temperature
- -flow velocity (SC)

Preparation procedure

- -volume
- -use of right products (batch numbers, expiry date, identification)
- -homogenization
- -labelling

Controls on final product

<u>Aspec</u>

label

- -visible particles
- -precipitates
- -bubbles

- Contrôle vidéo
- Contrôle gravimétrique
- Etiquetage : manuel ou automatisé

Exactitude <5%

Choix et contraintes des locaux d'installation d'un automate

Hotte ou isolateur ?

	Environnement interne du robot	Salle de production exigé
Robot en hotte	ISO 5 (Classe A)	ZAC ISO 7 (Classe C)
Robot en isolateur	ISO 5 (classe A)	ZAC ISO 8 (Classe D)

• Local dédié?

	Local dédié à l'automatisation	Installation au sein d'une ZAC manuelle
Avantages	 Activité indépendante Solution de secours en cas de panne de la ZAC manuelle Traitement d'air différent de la zone manuelle 	- Mutualisation du personnel- Une seule CTA- Flux de travail plus simple
Inconvénients	 Pas de mutualisation du personnel Double flux entrée et sortie de matières premières et produits finis 	 - Pas de ZAC de secours en cas de maintenance ou panne - Flux de production non identifié - Pièce de volume très important

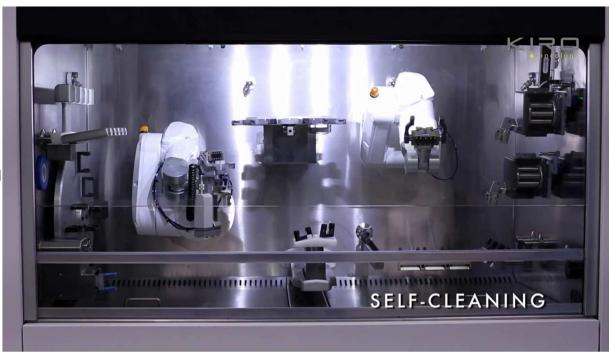
Intégration dans le flux de travail

Evaluation du flux de travail automatisable

- Type de préparation : poches, seringues, diffuseurs...
- Essai clinique
- Préparation pédiatrique
- Médicaments non automatisables (solvant spécifique, sensibilité à la température)
- Préparation individualisée ou dose standard

Productivité

- Dépend du niveau d'autonomie : temps de chargement, déchargement,
- Temps de production d'une campagne type
- Capacités de chargement
- Différence entre productivité annoncée et productivité réelle : cf les utilisateurs (10-15 préparations/h)


Hygiène et bionettoyage

- Temps de nettoyage quotidien
- Processus d'auto-nettoyage automatique

Fiabilité et maintenance

- Temps de maintenance préventive (2j tous les 3 mois à 1 jour par mois pour les systèmes les plus complexes)
- Télémaintenance

Etat des lieux du marché

- Système avec 1 bras robotisé
- Système avec 2 bras robotisés
- Robot sans bras : grande diversité de taille et de spécificités

Robot RIVA® (ARXIUM)

Robot RIVA® (ARXIUM)

	Robot RIVA®
Conception	 Hotte à flux d'air laminaire <u>1 bras robotisé</u>
Capacité de production annoncée	 Non communiquée Capacité importante de chargement (120 flacons, 46 poches, 148 seringues)
Types de préparations réalisables	En série ou nominativesPochesSeringues
Spécialités prises en charge	Solutions prêtes à l'emploiPoudre à reconstituer
Fonctionnalités	 <u>Etiquetage automatique du produit fini</u> Désinfection UV
Contrôles	 Contrôle des opérations manuelles par reconnaissance des médicaments et récipients finaux par lecture de codes-barres, data-matrix, vidéo Contrôle gravimétrique Identification unique des flacons et des poches par génération automatique d'une étiquette avec codes-barres

Robot Apoteca Chemo® (Loccioni)

	Apoteca Chemo®	
Conception	 Hotte à flux d'air laminaire 1 bras robotisé 	
Types de préparations réalisables	Poches, seringues et diffuseursEn série ou à l'unité	
Spécialités prises en charge	 Solutions prêtes à l'emploi Poudre à reconstituer Chargement max de 9 poches et 27 flacons 	
Fonctionnalités	 Réalise des préparations durant le chargement/déchargement Prend en charge des poches avec tubulures (consommable captif) Elimine les déchets (flacons vides, aiguilles) automatiquement dans des containers scellés Etiquetage manuel 	
Contrôles	 Contrôle des opérations manuelles par reconnaissance des médicaments et récipients finaux par lecture de codes-barres, data-matrix Contrôle gravimétrique Identification unique des flacons et des poches par génération automatique d'une étiquette avec codes- barres 	

Robot Kiro Oncology® (Grifols)

12 flacons, 8/10 poches et 4 seringues

Robot Kiro Oncology® (Grifols)

	KIRO Oncology®
Conception	 2 versions : hotte à flux d'air laminaire ou isolateur 2 bras robotisés
Types de préparations réalisables	 Poches, seringues et diffuseurs En série ou à l'unité
Spécialités prises en charge	Solutions prêtes à l'emploiPoudre à reconstituer
Fonctionnalités	 2 bras robotisés : 1 pour la reconstitution + 1 pour le prélèvement du médicament et l'injection dans conditionnement final Réalise des préparations durant le déchargement Prend en charge des poches avec tubulures Etiquetage manuel Elimine les déchets (flacons vides, aiguilles) automatiquement par un système en circuit fermé branché à des containers standards à déchets (type DPTE) Système d'auto-nettoyage
Contrôles	 Contrôle des opérations à l'aide de détecteurs de présence, d'une lecture de codes-barres Contrôle gravimétrique en cours de processus Identification de médicaments par lecture code data-matrix ou lecture de l'étiquetage et comparaison avec la base de données de référence

ACS – Steriline Robotics

- Traçabilité par puce RFID
- Stérilisation au peroxyde d'hydrogène du contenu du rack
- Productivité annoncée de 35 préparations/h

Les différents modules :

CLU : Module de chargement, contrôle et étiquetage

TC : Chariots de transfert (chargés de racks)

ACU : Module de production robotisée des chimiothérapies

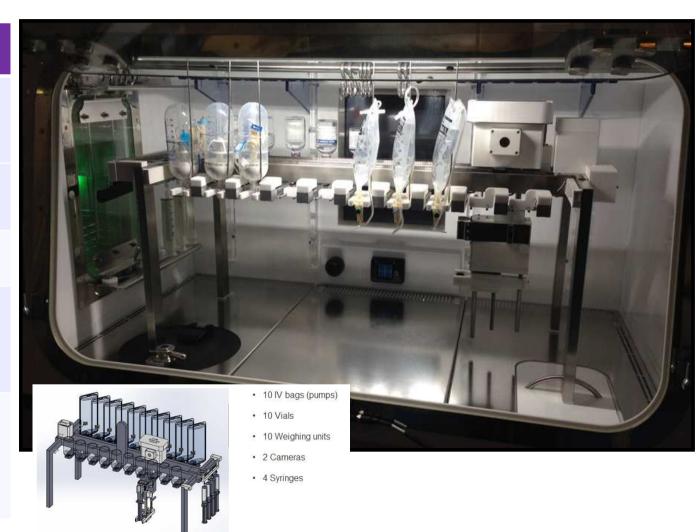
Rxbot®

	Rxbot® ()
Conception	 Hotte à flux d'air laminaire <u>Fonctionne avec des CSTD</u>
Types de préparations réalisables	En série ou nominativesPoches et diffuseurs
Spécialités prises en charge	Solutions prêtes à l'emploi
Fonctionnalités	 Sortie de la préparation dans un bac avec son étiquette Elimine les déchets automatiquement
Contrôles	 Traçabilité par puce RFID Identification datamatrix et caméra Contrôles par gravimétrie de chaque poche Enregistrement de toutes les étapes de production

Rxbot®

Pharmoduct® (Dedalus)

	Pharmoduct® (Dedalus)
Conception	Hotte à flux d'air laminaireSystème breveté de prélèvement
Types de préparations réalisables	En série ou nominativesPoches et diffuseurs
Spécialités prises en charge	Solutions prêtes à l'emploiPoudre à reconstituer
Fonctionnalités	 La phase de production est scindée en deux : le remplissage de la poche mère et la distribution dans les contenants finaux. Elimine les déchets automatiquement
Contrôles	 Traçabilité par puce RFID Identification vidéo des médicaments Identification datamatrix des solvants Contrôles par gravimétrie Enregistrement de toutes les étapes de production

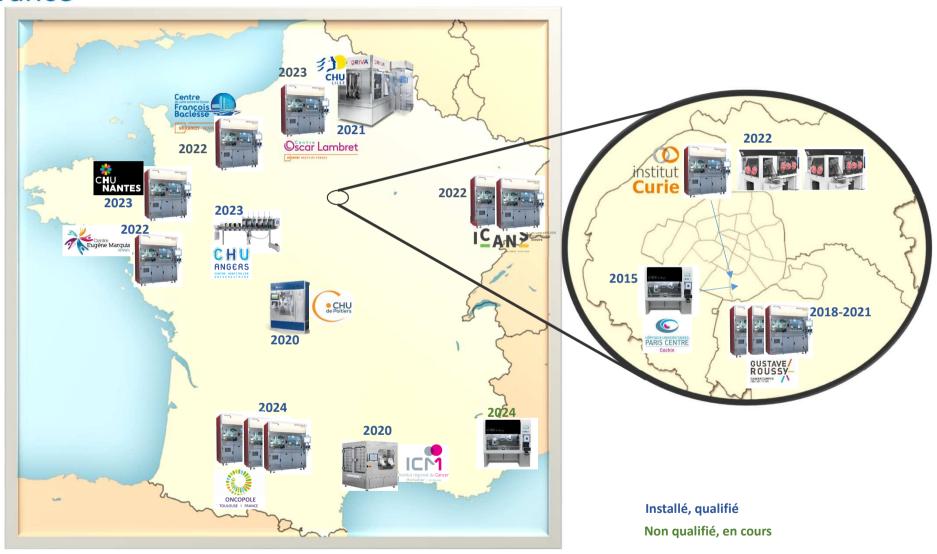


1 poche mère Plusieurs poches filles

$SmartCompounder^{\circledR}$

	SmartCompouder chemo® (Smartcompounder)
Conception	 Hotte à flux d'air laminaire Ou isolateur (peroxyde d'hydrogène) Peut fonctionner avec des CSTD (chemfort® Simplivia)
Types de préparations réalisables	En série ou nominativesPoches et diffuseurs
Spécialités prises en charge	Solutions prêtes à l'emploi
Fonctionnalités	 Système compact qui s'intègre dans un équipement existant Jusqu'à 4 médicaments différents par cycle Accepte les poches avec tubulure
Contrôles	 Traçabilité par puce RFID Identification datamatrix et caméra Contrôles par gravimétrie de chaque poche Enregistrement de toutes les étapes de production

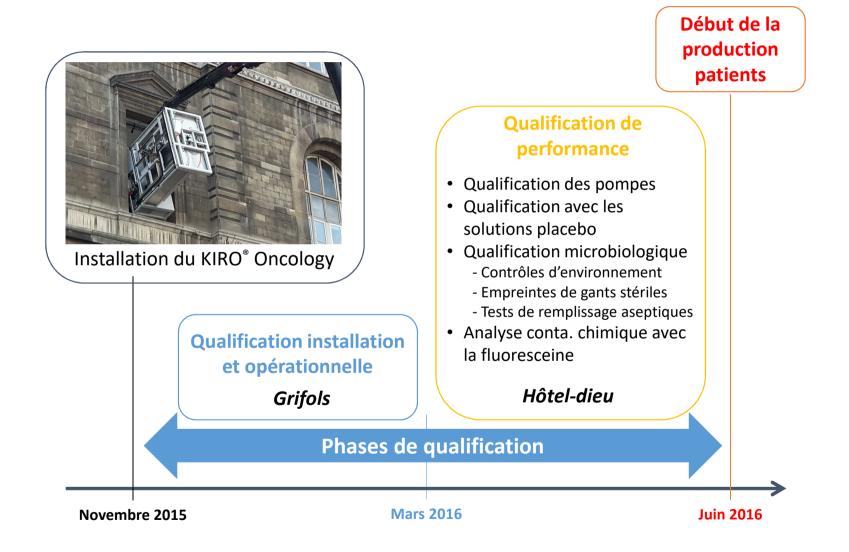
Dimensions (mm) Weight

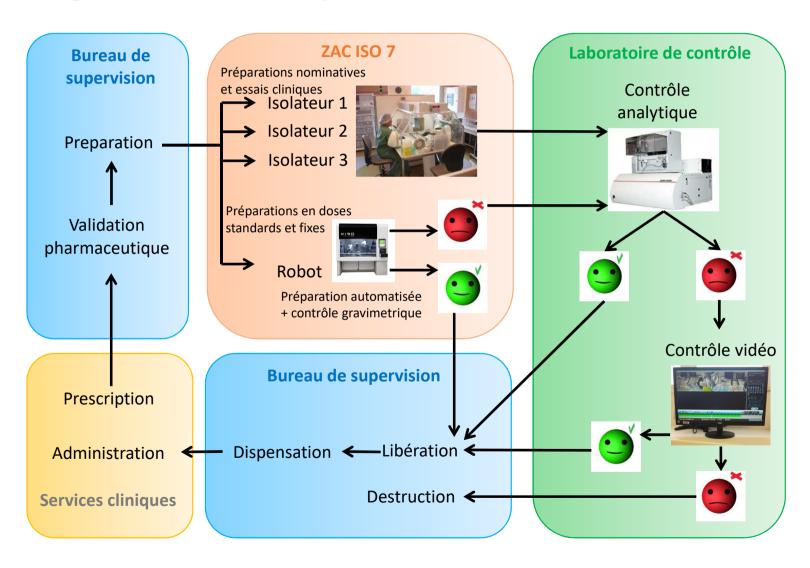


	Mundus HD®(Equashield)
Conception	 Hotte à flux d'air laminaire Ou isolateur (peroxyde d'hydrogène) Captif des CSTD Equashield
Types de préparations réalisables	En série ou nominativesPoches et diffuseurs
Spécialités prises en charge	Solutions prêtes à l'emploi
Fonctionnalités	 Système compact qui s'intègre dans un équipement existant 1 médicament par cycle
Contrôles	 Traçabilité par puce RFID Identification datamatrix et caméra Contrôle volumétrique

Mundus HD® Equashield

En France


Expérience Hôtel-Dieu/Cochin: Kiro oncology®


- Augmentation de la production sans augmentation des effectifs (prise en charge de l'HAD de l'AP-HP)
- Contraintes architecturales
 +++
- Partenariat pour innovation

Exemple de l'installation du 1^{er} robot KIRO Oncology® en France (Hôtel-dieu)

Organisation de la production

Liste des anticancéreux éligibles au 01/11/24

DCI	
Atezolizumab 🗡	Gemcitabine 🜟
Bevacizumab 🜟	Ifosfamide
Carboplatine 🜟	Irinotecan 🜟
Carfilzomib	Méthotrexate
Cisplatine	Nivolumab 🜟
Cyclophosphamide	Obinutuzumab 🜟
Cytarabine	Oxaliplatine 🜟
Dacarbazine	Paclitaxel 🜟
Daratumumab	Pembrolizumab //
Docetaxel *	Pemetrexed 🜟
Doxorubicine	Rituximab 🜟
Etoposide phosphate	Trastuzumab



Médicaments préparés en Doses standards ou fixes

Formation des personnels

- Durée : 1 semaine
- J1 : formation théorique et observation
- J2 : réalisation de 2 à 3 cycles avec le formateur
- J3, J4 : utilisation en autonomie sur la journée entière avec le formateur disponible en cas de besoin
- J5: évaluation finale

A distance: TRA

Utilisation actuelle

- 3 à 4 fois par semaine par 1 opérateur indépendant
- Productivité moyenne de 60 préparations
- Quasi exclusivement de doses standards

SD performed (bag)	Mean time (min)
1 Irinotecan AD	2,0
1 Nivolumab 240 mg	2,5
1 Bevacizumab AD	2,8
1 Carboplatin AD	3,2
1 Oxaliplatin AD	3,3
1 Gemcitabine AD	3,5
1 Etopophos AD	3,6
1 Nivolumab 480 mg	4,6
1 Rituximab 500 mg	4,7
1 Daratumumab 1200 mg	7,1
1 Rituximab 1000 mg	8,3

• Futur : utilisation quotidienne, suppression des tubulures pour diminuer le temps de chargement, DS + préparations nominatives

Conclusion

- L'integration d'un robot nécessite de repenser son organisation
- Le succès repose sur une technologie robuste et une informatique performante
- La robotisation permet aux préparateurs de diversifier leurs activités et d'être davantage acteurs dans l'organisation
- La robotisation est une des réponses à l'augmentation du nombre de préparations dans un contexte de réduction du personnel
- Objectif majeur de sécurisation des préparations tout en maîtrisant le risque de contamination

MERCI POUR VOTRE ATTENTION

